Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

نویسندگان

  • Mengyuan Zhang
  • Jiaqian Qin
  • Pengfei Yu
  • Bing Zhang
  • Mingzhen Ma
  • Xinyu Zhang
  • Riping Liu
چکیده

In this paper, an efficient method to produce a ZnO/BiOI nano-heterojunction is developed by a facile solution method followed by calcination. By tuning the ratio of Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites exhibit a significant improvement in the photodegradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to single-phase ZnO and BiOI. A sample with a Zn/Bi ratio of 3:1 showed the highest photocatalytic activity (≈99.3% after 100 min irradiation). The photodegradation tests indicated that the ZnO/BiOI heterostructured nanocomposites not only exhibit remarkably enhanced and sustainable photocatalytic activity, but also show good recyclability. The excellent photocatalytic activity could be attributed to the high separation efficiency of the photoinduced electron-hole pairs as well as the high specific area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

HIGHLIGHTS A facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge. Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Here...

متن کامل

Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance.

Novel Bi(2)S(3)/BiOI heterostructures were successfully synthesized through a facile and economical ion exchange method between BiOI and thioacetamide (CH(3)CSNH(2)), and characterized by multiform techniques, such as XRD, Raman, FT-IR, XPS, SEM, TEM, HRTEM, SAED, BET and DRS. The obtained Bi(2)S(3)/BiOI photocatalysts showed excellent photocatalytic performance for decomposing organic dye meth...

متن کامل

Synthesis and characterization ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites: Investigation of photocatalytic activity for the degradation of Congo Red under visible light irradiation

In the present investigation, ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites were fabricated via a facile hydrothermal method and were calcined at 300 °C for 3 h. Synthesis of ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites optimized by the different weight percentages. The synthesized photocatalyst...

متن کامل

Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity

Figure S1. Time‐dependent UV‐vis absorbance spectra of the MO solution in the presence (a) TiO2; (b) BiOI/TiO2‐C10; (c) BiOI/TiO2‐C20; (d) BiOI/TiO2‐C30; (e) mechanical mixture of BiOI and TiO2 (M‐BT) under UV light irradiation; (f) EDX of BiOI/TiO2‐C30 (Bi:Ti = 0.4:1).

متن کامل

HYDROTHERMAL SYNTHESIS OF NiS/CdS NANOCOMPOSITES WITH ENHANCED VISIBLE-LIGHT PHOTOCATALYTIC PERFORMANCE

Novel NiS/CdS heterostructures with enhanced visible-light photocatalytic activity were successfully prepared via a facile two-step hydrothermal process. The synthesized materials were characterized using X-ray diffraction, high-resolution transmission electron microscopy and UV-Vis diffuse reflectance spectroscopy. The photocatalytic activity was investigated by the degradation of quinoline un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018